THE HOME COMPUTER COURSE

MASTERYING YOUR HOME COMPUTER IN 24 WEEKS

16
Contents

Hardware
Past Memories We trace the development of computer memory and look at possibilities for the future
Sharp MZ-711 We review this rather under-rated Japanese home computer

Software
Board Meeting Bulletin Boards are an easy and inexpensive way to get in touch with other computer users

Basic Programming
Expanding Files We examine file structures in our programming project

Insights
Wired Society As well as numerous television channels, cable distribution could bring a range of other services into the home
One-Armed Bandits Robot arms are now available for even the cheapest home computers. We see how they operate

Passwords To Computing
Editorial Control We study the various methods of program editing directly on the screen

Pioneers In Computing
Lyons’ Share The corner teashop was the driving force behind the development of the first British commercial computer

Sound And Light
Simple Sounds...Primary Pictures We look at graphics on the Commodore Vic-20 and sound on the Sinclair Spectrum

Next Week
- We look at the Tandy Model 10, a home computer designed for the beginner, but with many features found on more sophisticated machines
- ‘Ergonomics’ is a computer term that means designing machines that are easy and pleasant to use. We examine how this applies to home computers
- The Disk Operating System keeps track of where everything is stored on a disk. We explain how this complex piece of software works
One-Armed Bandits

Small robot arms can provide an insight into control programming, and they can be interfaced to any home computer with a parallel port.

Have you ever wished there was some way that your computer could perform a simple task like make a cup of tea? There is no problem, given the correct interface, in programming a computer to switch the kettle on and off. But when it comes to physically manipulating objects, like tipping a kettle to pour hot water into a teapot, then it is a mechanical arm that is needed. Recently, such devices have become available for home computer users. These are smaller versions of the industrial arms used by companies like British Leyland and Fiat for welding and painting work on their assembly lines. The Colas Robotics 'Armsmaid', which was probably the first robot arm suitable for use with a home computer, first appeared in 1981. Although the arm is not mobile (unless you move it to a floor robot), it does allow objects to be manipulated with a remarkable degree of precision.

The main components of the robotic arm, apart from the metal sections themselves, are the stepper motors that facilitate movement of the sections by precise amounts. There are motors: one to rotate the arm at the 'waist', one each to control the 'shoulder' and 'elbow' sections, and three to control movement in the 'hand'. All these motors can be controlled very simply by a computer. All that is needed to interface the arm to a computer is a single eight-bit parallel port. One bit determines whether information is passed to or from the robot. Three address bits are used to select the desired motor, and the other four bits control the direction and speed of movement. Clock signals are also sent to synchronise the movements of the robot arm with the corresponding instructions. To speed things up and enable the arm to perform more complex manoeuvres, electronic latches are built into the control unit that allow any combination of motors to operate simultaneously by 'holding' the instruction to one motor while the other motors are being instructed.

In order to make the arm move in position and grip an object, it is necessary to divide the overall motion into a set of simple steps. Each motor will need to be instructed separately in precise movement that will together compose the total motion of the robot arm. This information is then stored in the computer's memory and the arm can be made to repeat the operation as many times as required. Most robot arms currently available are supplied with programs to drive them that include routines to 'learn' sequences of movements.

If the arm is handling delicate objects - the normal testpiece is an egg - the computer must be made to monitor the pressure of the grip. If it is too light the egg will fall; if it is too tight the shell will be broken. Various methods are used to convey information from the arm to the computer, but the most common involve simple microswitches. These can be fitted to set the limits of travel of the arm (most low-cost arms do not include sensors), or they can be built into the grip to detect a pre-set pressure limit.

The main alternative system to microswitches, used on most of the bigger arms, is based on pressure sensing. Certain materials alter their electrical resistance when subjected to change of pressure and these fluctuations can be measured. Although this method is more expensive it does provide very accurate results.

If the program allows no feedback of information from the arm to the computer, it is known as 'open loop', or deterministic. In our example above, such a program would undoubtedly result in a broken egg. If there is, however, some kind of feedback that adjusts the actions carried out under the program, then the system becomes 'closed loop', or stochastic. Here the microswitches or pressure sensors are used to limit the closing of the grip at a point where the egg is firmly gripped but not crushed.

Many of the more sophisticated robot systems include multiple sensors to measure light, heat and other variables. These sensors can be used to keep track of what is happening while the arm performs its task, and report back if something is going wrong: a robot welder happily burning holes in itself, for example!